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Abstract. Most real-world information networks, such as social net-
works, are heterogeneous and as such, relationships in these networks
can be of different types and hence carry differing semantics. There-
fore techniques for link prediction in homogeneous networks cannot be
directly applied on heterogeneous ones. On the other hand, works that
investigate link prediction in heterogeneous networks do not necessarily
consider network dynamism in sequential time intervals. In this work we
propose a technique that leverages a combination of latent and topo-
logical features to predict a target relationship between two nodes in
a dynamic heterogeneous information network. Our technique, called
MetaDynaMix, effectively combines meta path-based topology features
and inferred latent features that incorporate temporal network changes
in order to capture network (1) heterogeneity and (2) temporal evolution,
when making link predictions. Our experiment results on two real-world
datasets show statistically significant improvement over AUCROC and
prediction accuracy compared to the state of the art techniques.

1 Introduction

The goal of link prediction [18] is to estimate the likelihood of a future relation-
ship between two nodes based on the observed network graph. Predicting such
relationships in a network can be applied in different contexts such as recommen-
dation systems [4,13,17,20,29], network reconstruction [12], node classification
[11], or biomedical applications such as predicting protein-protein interactions
[15]. Traditional link prediction techniques, such as [18], consider networks to be
homogeneous, i.e., graphs with only one type of nodes and edges. However, most
real-world networks, such as social networks, scholar networks, patient networks
[6] and knowledge graphs [35] are heterogeneous information networks (HINs)
[28] and have multiple node and relation types. For example, in a bibliographic
network, there are nodes of types authors, papers, and venues, and edges of types
writes, cites and publishes.
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In a HIN, relations between different entities carry different semantics. For
instance, the relationship between two authors is different in meaning when they
are co-authors compared to the case when one cites another’s paper. Thus tech-
niques for homogeneous networks [1,16,18,19,34] cannot be directly applied on
heterogeneous ones. A few works such as [30,31] investigated the problem of link
prediction in HINs, however, they do not consider the dynamism of networks and
overlook the potential benefits of analyzing a heterogeneous graph as a sequence
of network snapshots. Previous work on temporal link prediction scarcely studied
HINs and to the best of our knowledge, the problem of predicting relationships
in dynamic heterogeneous information networks (DHINs) has not been studied
before. In this work we study the problem of relationship prediction in a DHIN,
which can be stated as: Given a DHIN graph G at t consecutive time intervals,
the objective is to predict the existence of a particular relationship between two
given nodes at time t+1. In the context of this problem, the main contributions
of our work can be enumerated as follows:

– We propose the problem of relationship prediction in a DHIN, and draw
contrast between this problem and existing link prediction techniques that
have been proposed for dynamic and/or heterogeneous networks;

– We present a simple yet effective technique, called MetaDynaMix, that lever-
ages topological meta path-based and latent features to predict a target rela-
tionship between two nodes in a DHIN;

– We empirically evaluate the performance of our work on two real-world
datasets, and the results show statistically significant improvement over
AUCROC and prediction accuracy compared to the state of the art tech-
niques.

2 Problem Statement

Our work is focused on heterogeneous information networks (graphs) that can
change and evolve over time. As such, we first formally define the concept of
Dynamic Heterogeneous Information Networks, as follows:

Definition 1 (Dynamic heterogeneous information network). A
dynamic heterogeneous information network (DHIN) is a directed graph G =
(V , E) with a node type mapping function φ : V → A and a link type map-
ping function ψ : E → R, where V , E, A, and R denote sets of nodes, links,
node types, and relation types, respectively. Each node v ∈ V belongs to a node
type φ(v) ∈ A, each link e ∈ E belongs to a relation ψ(e) ∈ R, and |A| > 1
and |R| > 1. Also each edge e = (u, v, t) connects two vertices u and v with a
timestamp t. �

The DBLP bibliographic network is an example of a DHIN, containing dif-
ferent types of nodes such as papers, authors, topics, and publication venues,
with publication links associated with a date. In the context of a heterogeneous
network, a relation can be in the form of a direct link or an indirect link, where
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Fig. 1. Network schema for DBLP network.

an indirect link is a sequence of direct links in the network. Thus, two nodes
might not be directly connected, however they might be considered to be indi-
rectly connected through a set of intermediary links. In this work, we use the
terms relationship prediction and link prediction interchangeably referring to
predicting whether two nodes will be connected in the future via a sequence of
relations in the graph, where the length of a sequence is greater than or equal
to one. For instance in a bibliographic network, a direct link exists between an
author and a paper she wrote, and an indirect link exists between her and her
co-authors through the paper, which they wrote together. In order to better
capture different types of nodes and their relation in a network, the concept of
network schema [32] is used. A network schema is a meta graph structure that
summarizes a HIN and is formally defined as follows:

Definition 2 (Network schema). For a heterogeneous network G = (V,E),
the network schema SG = (A,R) is a directed meta graph where A is the set of
node types in V and R is the set of relation types in E. �

Figure 1 shows the network schema for the DBLP bibliographic network with
A = {Author,Paper,Venue,Topic}. In this paper, we refer to different types of
nodes in the DBLP bibliographic network with abbreviations P for paper, A for
author, T for topic, and V for venue.

Similar to the notion of network schema that provides a meta structure for the
network, a meta path [32] provides a meta structure for paths between different
node types in the network.

Definition 3 (Meta path). A meta path P is a path in a network schema
graph SG = (A,R), denoted by P(A1, An+1) = A1

R1−−→ A2...
Rn−−→ An+1, as a

sequence of links between node types defining a composite relationship between a
node of type A1 and one of type An+1, where Ai ∈ A and Ri ∈ R. �

The length of a meta path is the number of relations in it. Note that given
two node types Ai and Aj , there may exist multiple meta paths of different
lengths between them. We call a path p = (a1a2...an+1) a path instance of a
meta path P = A1 − A2... − An+1 if p follows P in the corresponding HIN, i.e.,
for each node ai in p, we have φ(ai) = Ai. The co-author relationship in DBLP
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Fig. 2. An example of a publications network. Link formation time is shown below the
paper ID.

can be described with the meta path A
write−−−→ P

write−1

−−−−−→ A or in short A–P–A.
Paths in thick solid lines in Fig. 2(a) correspond to A–P–V–P–A meta paths
between Max and Ada, indicating they published in the same venue, such as
Max–P1–ECIR–P3–Ada. Each meta path carries different semantics and defines
a unique topology representing a special relation.

Meta Path-Based Similarity Measures. Given a meta path P = (Ai, Aj)
and a pair of nodes a and b such that φ(a) = Ai and φ(b) = Aj , several similarity
measures can be defined between a and b based on the path instances of P.
Examples of such similarity or proximity measures in a HIN are path count [30,
32], PathSim [32] or normalized path count [30], random walk [30], HeteSim [27],
and KnowSim [36]. Without loss of generality, in this work, we use Path Count
(PC) as the default similarity measure. For example, given the meta path A–P–
V–P–A and the HIN in Fig. 2(a), PC(Max,Ada) = 3 and PC(Tom,Ada) = 4.
We now formally define the problem that we target in this work as follows:

Definition 4 (Relationship prediction problem). Given a DHIN graph G
at time t, and a target relation meta path P(Ai, Aj) between nodes of type Ai

and Aj, we aim to predict the existence of a path instance of P between two given
nodes of types Ai and Aj at time t + 1. �

3 Proposed Relationship Prediction Approach

Given a DHIN graph G = (V,E), we decompose G into a sequence of t HIN
graphs G1, .., Gt based on links with associated timestamps and then predict
relationships in Gt+1. As mentioned in Definition 4, we intend to predict exis-
tence of a given type of relationship (target meta path) between two given nodes.
Thus we define a new type of graph, called augmented reduced graph that is gen-
erated according to an input heterogeneous network and a target relation meta
path.
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Fig. 3. Augmented reduced graphs for the network in Fig. 2(a) with respect to the
target meta path A–P–A (co-authorship) in 2016 and 2017.

Definition 5 (Augmented reduced graph). Given a HIN graph G = (V,E)
and a target meta path P(Ai, Aj) between nodes of type Ai and Aj, an augmented
reduced graph GP = (V P , EP) is a graph, where V P ⊆ V and nodes in V P are
of type Ai and Aj, and edges in EP indicate relationships of type P in G. �

For example, an augmented reduced graph for the network in Fig. 2(a) and
target meta path P(A,A) = A–P–V–P–A is a graph shown in Fig. 2(b) whose
nodes are of type Author and whose edges represent publishing in the same
venue.

3.1 Homogenized Link Prediction

Once the given DHIN graph G = (V,E) is decomposed into t HIN graphs
G1, .., Gt, one solution to the relationship prediction problem (Definition 4) is
to build an augmented reduced graph GP

i for each Gi with respect to the given
target meta path P and then predict a link in GP

i instead of a path in Gi. In
other words, we generate a homogenized version of a graph snapshot and apply a
link prediction method. Figure 3 shows examples of such graphs at different time
intervals. The intuition behind considering different snapshots, i.e., a dynamic
network, rather than a single snapshot for link prediction is that we can incorpo-
rate network evolution patterns to increase prediction accuracy. Our hypothesis
is that the estimated graph ĜP

i+1 is dependent on ĜP
i .

Recent research in link prediction has focused on network latent space infer-
ence [7,22,25,37,41] with the assumption that the probability of a link between
two nodes depends on their positions in the latent space. Each dimension of
the latent space characterizes an attribute, and the more two nodes share such
attributes, the more likely they are to connect (also known as homophily).
Amongst such graph embedding methods, a few [7,41] considered dynamic net-
works. Inspired by Zhu et al. [41], we formulate our problem as follows: Given
a sequence of augmented reduced graphs GP

1 , .., GP
t , we aim to infer a low rank

k-dimensional latent space matrix Zi for each adjacency matrix GP
i at time i by

minimizing

argmin
Z1,..,Zt

t∑

i=1

(
∥
∥GP

i − ZiZ
T
i

∥
∥2

F
+ λ

∑

x∈V P
(1 − Zi(x)Zi−1(x)T )

)

subject to: ∀x ∈ V P , i, Zi ≥ 0, Zi(x)Zi(x)T = 1
(1)
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Algorithm 1. Homogenized Link Prediction
Input: A DHIN graph G, the number of snapshots t, a target meta path P(A, B), the latent space

dimension k, the link to predict (a, b) at t + 1

Output: The probability of existence of link (a, b) in GP
t+1

1: {G1, .., Gt} ← DecomposeGraph(G, t)
2: for each graph Gi = (Vi, Ei) do
3: for each node x ∈ Vi that φ(x) = A do
4: Follow P to reach a node y ∈ Vi that φ(y) = B

5: Add nodes x and y, and edge (x, y) to the augmented reduced graph GP
i

6: end for
7: end for
8: {Z1, .., Zt} ← MatrixFactorization(GP

1 , .., GP
t , k)

9: Return Pr((a, b) ∈ EP
t+1) ← ∑k

i=1 Zt(a, i)Zt(b, i)

where Zi(x) is a temporal latent vector for node x at time i, λ is a regulariza-
tion parameter, and 1 − Zi(x)Zi−1(x)T penalizes sudden changes for x in the
latent space. This optimization problem can be solved using gradient descent.
The intuition behind the above formulation is two fold: (1) nodes with similar
latent space representation are more likely to connect with each other, and (2)
nodes typically evolve slowly over time and abrupt changes in their connection
network are less likely to happen [39]. The matrix GP

t+1 can be estimated by
Φ(f(Z1, ...Zt)), where Φ and f are link and temporal functions, or simply by
ZtZ

T
t . Note that Zi depends on Zi−1 as used in the temporal regularization

term in Eq. (1).
Algorithm 1 presents a concrete implementation of Eq. 1 for relation predic-

tion. It takes as input a DHIN graph G, the number of graph snapshots t, a
target relation meta path P(A,B), the latent space dimension k, and the link to
predict (a, b) at t+1. It first decomposes G into a sequence of t graphs G1, .., Gt

by considering the associated timestamps on edges (line 1). Next from each graph
Gi, a corresponding augmented reduced graph GP

i is generated (lines 2–7) for
which nodes are of type a and b (beginning and end of target meta path P). For
example given P(A,A) = A–P–A, each GP

i represents the co-authorship graph
at time i. Finally by optimizing Eq. (1), it infers latent spaces Z1, ..., Zt (line 8)
and estimates GP

t+1 using ZtZ
T
t (line 9).

3.2 Dynamic Meta Path-Based Relationship Prediction

The above homogenized approach does not consider different semantics of meta
paths between the source and destination nodes and assumes that the probability
of a link between nodes depends only on their latent features. For instance, as
depicted in Fig. 3, Tom and Ada became co-authors in 2017 that can be due to
publishing at the same venue in 2016, i.e., having two paths between them that
passes through SIGIR, as shown in Fig. 2. Similarly Ben and Ada who published
with a same author, Ali in 2016, became co-authors in 2017.

We would like to further hypothesize that combining latent and topological
features can increase prediction accuracy as we can learn latent features that fit
the residual of meta path-based features. One way to combine these features is
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to incorporate meta path measures in Eq. (1) by changing the loss function and
regularization term as:

argmin
θi ,Zi

t∑

i=1

∥
∥
∥
∥GP

i − (ZiZ
T
i +

n∑

i=1

θii−1FPi
i−1)

∥
∥
∥
∥

2

F

+λ
t∑

i=1

(
∑

x∈V P
(1 − Zi(x)Zi−1(x)T ) +

n∑

i=1

θ2ii

) (2)

where n is the number of meta path-based features, FPi is the ith meta path-
based feature matrix defined on Gi, and θi is the weight for feature fi. Although
we can use a fast block-coordinate gradient descent [41] to infer Zis, it cannot be
efficiently applied to the above changed loss function. This is because it requires
computing meta paths for all possible pairs of nodes in FPi for all snapshots,
which is not scalable, as calculating similarity measures, such as Path Count or
PathSim, can be very costly. For example computing path counts for the A–P–V–
P–A meta path can be done by multiply adjacency matrices AP×PV ×V P×PA.

As an alternative solution, we build a predictive model that considers a lin-
ear interpolation of topological and latent features. Given the training pairs of
nodes and their corresponding meta path-based and latent features, we apply
logistic regression to learn the weights associated with these features. We define
the probability of forming a new link in time t + 1 from node a to b as

Pr(label = 1|a, b;θ) = 1
e−z+1 , where z =

n∑

i=1

θif
Pi
t (a, b)+

k∑

j=1

θn+jZt(a, j)Zt(b, j),

and θ1, θ2, ..., θn and θn+1, θn+2, ..., θn+k are associated weights for meta path-
based features and latent features at time t between a and b. Given a training
dataset with l instance-label pairs, we use logistic regression with L2 regulariza-
tion to estimate the optimal θ as:

θ̂ = argmin
θ

l∑

i=1

−logPr(label|ai, bi;θ) + λ
n+k∑

j=1

θ2j (3)

We prefer to combine features in this learning framework since Gi is very
sparse and thus the number of newly formed links are much less compared to all
possible links. Consequently calculating meta path-based features for the train-
ing dataset is scalable compared to the matrix factorization technique. Moreover,
similar to [30], in order to avoid excessive computation of meta path-based mea-
sures between nodes that might not be related, we confine samples to pairs that
are located in a nearby neighborhood. More specifically, for each source node x
in GP

i , we choose target nodes that are within two hops of x but not in 1-hop,
i.e, are not connected to x in GP

i . We first find all target nodes that make a
new relationship with x in GP

i+1 and label respective samples as positive. Next
we sample an equivalent number of negative pairs, i.e., those targets that do
not make new connection, in order to balance our training set. Once the dataset
is built, we perform logistic regression to learn the model and then apply the
predictive model to the feature vector for the target link. The output probability
can be later interpreted as a binary value based on a cut-off threshold.
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Algorithm 2. Dynamic Meta path-based Relationship Prediction
Input: A DHIN graph G, the number of snapshots t, a network schema S, a target meta path

P(A, B), the maximum length of a meta path l, the latent space dimension k, the link to
predict (a, b) at t + 1

Output: The probability of existence of link (a, b) in GP
t+1

1: {G1, .., Gt} ← DecomposeGraph(G, t)

2: Generate target augmented reduced graphs GP
1 , .., GP

t following Algorithm 1 lines 2-7
3: {P1, .., Pn} ← GenerateMetaPaths(S, P(A, B), l)

4: {Z1, .., Zt} ← MatrixFactorization(GP
1 , .., GP

t , k)

5: for each pair (x, y), where x ∈ V P
t−1 and y ∈ N(x) is a nearby neighbor of x in GP

t−1 do

6: Add feature vector 〈fPi
t−1(x, y) for i = 1..n, Zt−1(x, j)Zt−1(y, j) for j = 1..k)〉 to the training

set T with label = 1 if (x, y) is a new link in EP
t otherwise label = 0.

7: end for
8: model ← Train(T )

9: Return Pr((a, b) ∈ EP
t+1) ← Test(model, 〈fPi

t (a, b) for i = 1..n, Zt(a, j)Zt(b, j) for j = 1..k)〉)

We describe steps for building and applying our predictive model, called
MetaDynaMix, in Algorithm 2. The algorithm takes as input a DHIN graph G,
the number of graph snapshots t, a network schema S, a target relation meta
path P(A,B), the maximum length of a meta path l, the latent space dimension
k, and the link to predict (a, b) at t+1. Similar to Algorithm 1, it decomposes G
into a sequence of graphs (line 1). Next it generates augmented reduced graphs
GP

i s from Gis based on P for nodes which are of type A and B (beginning and
end of meta path P) (line 2) as explained in Algorithm 1. It then produces the
set of all meta paths between nodes of type A and type B defined in P(A,B)
(line 3). This is done by traversing the network schema S (for instance through
BFS traversal) and generating meta paths with the maximum length of l. It
then applies matrix factorization to find latent space matrices Zi (line 4). Next
it creates a training dataset for sample pairs (x, y) with feature set containing
meta path-based measures fPi

t (x, y) for each meta path Pi, and latent features
Zt(a, j)Zt(b, j) for j = 1..k at time t, and label=1 if (x, y) is a new link in GP

t+1

otherwise label=0 (lines 5–7). Subsequently the algorithm trains the predictive
model (line 8), generates features for the given pair (a, b), and tests it using the
trained model (line 9).

4 Experiments

4.1 Experiment Setup

Dataset. We conduct our experiments on two real-world network datasets that
have different characteristics and evolution behaviour.

Publications Dataset: The AMiner citation dataset [33] version 8 (2016-07-14) is
extracted from DBLP, ACM, and other sources. It contains 3,272,991 papers and
8,466,859 citation relationships for 1,752,443 authors, who published in 10,436
venues, from 1936 to 2016. Each paper is associated with an abstract, authors,
year, venue, and title. We confined our experiments to papers published since
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1996, which includes 2,935,679 papers. Similar to [30], we considered only authors
with at least 5 papers.

Movies Dataset: The RecSys HetRec movie dataset [3] is an extension of Movie-
Lens10M published by the GroupLens research group that links the movies of
MovieLens dataset with their corresponding web pages on IMDB and Rotten
Tomatoes. It contains information of 2,113 users, 10,197 movies, 20 movie gen-
res (avg. 2.04 genres per movie), 4,060 directors, 95,321 actors (avg. 22.78 actors
per movie), 72 countries, and 855,598 ratings (avg. 404.92 ratings per user, and
avg. 84.64 ratings per movie).

Experiment Settings. Here, we describe meta paths and target relationships,
baseline methods, and different parameter settings that have been used in our
experiments.

Meta Paths and Target Relationships. Figure 4 depicts network schemas for the
two datasets. Note that we consider a simplified version and ignore nodes such
as topic for papers or tag for movies. Table 1 presents a number of meta paths
that we employed in our experiments where target meta path relations are co-
authorship and watching. Note that in the publications network, each paper
is published only once and authorship relationships are formed at the time of
publication whereas in the movies network, users can watch/rate a movie at
any given point in time and hence user-movie relations are not as rigid as the
authorship relations in the publication dataset.

Venue

Paper

Author
Director

Movie

Actor

User Genre

(a) Publications Network (b) Movies Network

Fig. 4. The simplified network schema used for our experiments.

Baseline Methods. Sun et al. [30] proposed a supervised learning framework for
link prediction in HINs, called PathPredict, that learns coefficients associated
with meta path-based features by maximizing the likelihood of new relationship
formation. Their model is learned based on one past interval and does not con-
sider temporal changes in different intervals. Since to our knowledge there is no
baseline for relationship prediction in DHINs, we perform comparative analysis
of our work, denoted as MetaDynaMix, with four techniques: (1) The original
PathPredict [30] that considers only 3 intervals, (2) PathPredict applied on dif-
ferent time intervals, denoted as PathPredict+, (3) homogenized link prediction
(Sect. 3.1) by applying [41], denoted as HLP, and (4) logistic regression on HLP
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Table 1. Meta paths for publications dataset with V = {Author, Paper, Venue} and
movies dataset with V = {User, Movie, Actor, Director, Genre}.

Network Meta path Meaning

Publications A–P–A [The target relation] Authors are coauthors

A–P–V–P–A Authors publish in the same venue

A–P–A–P–A Authors have the same co-author

A–P–P–P–A Authors cite the same papers

Movies U–M [The target relation] A user watches a movie

U–M–A–M A user watches a movie with the same actor

U–M–D–M A user watches a movie with the same director

U–M–G–M A user watches a movie of the same genre

U–M–U–M A user watches a movie that another user

latent features, denoted as LRHLP. Note that PathPredict [30] was shown to
outperform traditional link prediction approaches that use topological features
defined in homogeneous networks such as common neighbors or Katzβ, and thus
we do not include these techniques in our experiments.

Parameters. We set the number of snapshots t = 3, 5, and 7 to evaluate the
effect of dynamic analysis of different time intervals. Note that t = 3 refers to the
default case for many link prediction algorithms that learn based on one interval
and test based on another. More specifically in the training phase, features are
extracted based on T1 and labels are determined based on T2, and for the testing
phase, features are calculated based on T2 and labels are derived from T3. In our
experiments we did not observe a considerable change in prediction performance
by setting the number of latent features k to 5, 10, and 20, and thus all presented
results are based on setting k to 20.

Implementation. We use the implementation of matrix factorization for infer-
ring temporal latent spaces of a sequence of graph snapshots presented in [41].
We use all the default settings such as the number of latent features k to be
20, and the optimization algorithm to be the local block-coordinate gradient
descent. For the classification part, we use the efficient LIBLINEAR [8] package
and set the type of solver to L2-regularized logistic regression (primal).

Evaluation Metrics. To assess link prediction performance, we use Area Under
Curves (AUC) for Receiver Operating Characteristic (ROC) [5] and accuracy
(ACC). We also perform the McNemar’s test [21] to assess the statistical signif-
icance of the difference between classification techniques.
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4.2 Results and Findings

Link Prediction Accuracy. We now compare the prediction accuracy of different
methods. The results shown in Fig. 5 are based on setting the number of time
intervals t to 7 for dynamic methods and 3 intervals for PathPredict. Table 2
shows more details considering different intervals. These results show the sta-
tistically significant improvement provided by the proposed MetaDynaMix pre-
diction method compared to the baselines. The authors in [22,41] showed that
latent features are more predictive compared to unsupervised scoring techniques
such as Katz, or Adamic. In our experiments we observed that combining latent
features with meta path-based features (MetaDynaMix) can increase predic-
tion accuracy. However, if latent features learn similar structure as topological
features do, then mixing them may not be beneficial. In such cases feature engi-
neering techniques could be applied.

We also observe that PathPredict+ performs better than LRHLP in predict-
ing links for the publications network but LRHLP offers more accurate predic-
tions on the movies network. This implies that unlike the publications network,
our meta path-based features for the movies network are not as predictive as
latent features. However, in both cases combining the two set of features gives
better performance than either model individually.

Fig. 5. The ROC curves for different methods and datasets.

Significance of Improvement. McNemar’s test, also called within-subjects χ2 test,
is used to compare statistically significant difference between the accuracy of
two predictive models based on the contingency table of their predictions. The
null hypothesis assumes that the performances of the two models are equal. We
compare MetaDynaMix with the other four baselines and the test results show
a p-value < 0.0001 for all cases and hence we reject the null hypothesis.

The Effect of Time Intervals. We set the number of time intervals t to 3, 5,
and 7 and assess its impact on prediction performance. As presented in Table 2,
accuracy increases with the number of snapshots. The intuition is that shorter
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Table 2. Relationship prediction accuracy comparison. Bold values are determined to
be statistically significant compared to the baselines based on McNemar’s test.

Method Metric Publications network Movies network

t = 3 t = 5 t = 7 t = 3 t = 5 t = 7

PathPredict ROC 0.78 – – 0.56 – –

ACC 0.55 – – 0.54 – –

PathPredict+ ROC 0.78 0.80 0.83 0.56 0.57 0.57

ACC 0.55 0.58 0.60 0.54 0.54 0.55

HLP ROC 0.42 0.43 0.46 0.51 0.53 0.54

ACC 0.50 0.50 0.50 0.51 0.52 0.53

LRHLP ROC 0.49 0.50 0.52 0.52 0.56 0.59

ACC 0.47 0.50 0.51 0.52 0.56 0.58

MetaDynaMix ROC 0.85 0.87 0.87 0.57 0.59 0.63

ACC 0.78 0.80 0.82 0.56 0.60 0.62

time intervals result in less changes in the graph and thus leads to more reliable
predictions. For example considering a meta path A–P–V–P–A, with smaller
number of intervals, i.e., longer time intervals, we have more distinct authors
who have published in a venue in different years and thus more similar path
count values. However, by considering more intervals fewer authors will have
such relations and more diverse path counts can contribute to a more accurate
prediction for the next time interval.

5 Related Work

The problem of link prediction in static and homogeneous networks has been
extensively studied in the past [1,2,16,18,19,34], for which the probability of
forming a link between two nodes is generally considered as a function of their
topological similarity. However, such techniques cannot be directly applied to
heterogeneous networks. A few works such as [30,31] investigated the problem
of link prediction in HINs. Sun et al. [30] showed that PathPredict outperforms
traditional link prediction approaches that use topological features defined on
homogeneous networks such as common neighbors, preferential attachment, and
Katzβ. Different from the original link prediction problem, Sun et al. [31] studied
the problem of predicting the time of relationship building in HINs. These works,
however, do not consider the dynamism of networks and overlook the potential
benefits of analyzing a HIN as a sequence of network snapshots.

Research works on static latent space inference of networks [22,25,26,37,38]
have assumed that the latent positions of nodes are fixed, and only few graph
embedding methods [7,10,41] have considered dynamic networks. Dunlavy et al.
[7] developed a tensor-based latent space modeling technique to predict temporal
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links. Zhu et al. [41] added a temporal-smoothing regularization term to a non-
negative matrix factorization objective to penalize abrupt large changes in the
latent positions. These works do not consider heterogeneity of network structure.

6 Conclusions and Future Work

We have studied the problem of relationship prediction in DHINs and proposed
a supervised learning framework based on a combined set of latent and topo-
logical meta path-based features. Our results show that the proposed technique
significantly improves prediction accuracy compared to the baseline methods. As
a part of future work and given the major computational bottleneck of methods
that rely on meta-paths, such as our approach, is calculating meta path-based
measures, we would like to investigate approximation techniques to make the
prediction process scalable. Furthermore, we are interested in enhancing the
matrix factorization technique based on a loss function that does not require
the full topological features matrix. Another interesting direction to investigate
is the effectiveness of our proposed approach in other application domains such
as predicting user interests in a social network that is both temporally dynamic
and heterogeneous by nature. Link prediction techniques may also increase the
risk of link disclosure, such as through link reconstruction and re-identification
attacks [9,40], and thus increase privacy concern. It is interesting to study the
effect of our technique in performance of link privacy preserving methods, such
as [14,23,24,40], and propose suggestions for improvement.
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